We thank the Department of Science and Technology and the University Grants Commission, Government of India, for financial assistance.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: SE1059). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Desiraju, G. R. & Sharma, C. V. K. (1991). J. Chem. Soc. Chem. Commun. pp. 1239–1240.
- Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures, p. 21. Berlin: Springer Verlag.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Motherwell, W. D. S. & Clegg, W. (1978). PLUTO. Program for Plotting Molecular and Crystal Structures. Univ. of Cambridge, England.
- Sharma, C. V. K., Panneerselvam, K., Pilati, T. & Desiraju, G. R. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 2209–2217.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
- Turi, L. & Dannenberg, J. J. (1993). J. Phys. Chem. 97, 7899-7909.

Construction of the Tetracyclic Skeleton of

Leucothol A. 1,2,4a,5,6,7,8,9,10,10a,11,11a-

Dodecahydro-11-hydroxy-11-methyl-7-

phenylthiomethyl-5aH-5a,8-methano-

moto, 1973). Although structurally different members of this family, such as the grayanotoxins, have been synthetized previously, the ethanoanthracene skeleton has not. The significant central nervous system activity of closely related products and the novel structural elements contained within the leucothol A skeleton combine to make it a worthwhile synthetic objective. We have recently completed the first synthetic pathway leading to an ethanoanthracene product. The title compound, (2), is formed in a seven-step synthetic sequence that is initiated by a novel bridgehead connection. The details of the synthesis are published elsewhere (Kraus & Su, 1994).

cyclohepta[b]naphthalen-10-one

Acta Cryst. (1995). C51, 1366-1368

GEORGE A. KRAUS, QIAOGONG SU AND VICTOR G. YOUNG JR

Gilman Hall, Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, USA

(Received 17 June 1994; accepted 2 December 1994)

Abstract

The title compound, $C_{24}H_{30}O_2S$, is a tetracyclic intermediate for the synthesis of leucothol A and the first example of an ethanoanthracene skeleton to be synthetized. The single-crystal X-ray structure of this compound is presented.

Comment

Leucothol A, (1), is a novel diterpene isolated from the leaves of *Leucothol grayana* (Hikino, Koriyama & Take-

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved Fig. 1. The structure of the title compound showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity.

Experimental

Crystal data

 $C_{24}H_{30}O_{2}S$ $M_{r} = 382.54$ Monoclinic $P2_{1}/c$ a = 5.976 (1) Å b = 13.146 (1) Å c = 25.883 (3) Å $\beta = 93.84 (1)^{\circ}$ $V = 2028.8 (4) \text{ Å}^{3}$ Z = 4 $D_{x} = 1.252 \text{ Mg m}^{-3}$ Cu $K\alpha$ radiation $\lambda = 1.54178$ Å Cell parameters from 25 reflections $\theta = 20.9-26.9^{\circ}$ $\mu = 1.529$ mm⁻¹ T = 213 (1) K Monoclinic $0.50 \times 0.45 \times 0.15$ mm Colorless

Acta Crystallographica Section C ISSN 0108-2701 ©1995

G. A. KRAUS, Q. SU AND V. G. YOUNG JR

Data collection		C4C5	1.539 (3)	C17—C18	1.516 (3)
Siemens P4RA diffractom-	2389 observed reflections	$C_{5} = C_{10}$	1.525 (3)	C19	1.381 (4)
eter	$[l > 2\sigma(l)]$	C5C6	1.545 (5)	$C_{1}^{2} = C_{2}^{2}$	1.378 (4)
Profile fitted 28/11 scens	$R_{1} = 0.0445$	C6-C7	1.568 (3)	C21—C22	1.386 (4)
$(C_{1}, z_{2}, 1091)$	$\Lambda_{\rm int} = 0.0445$	C702	1.434 (2)	C22—C23	1.365 (5)
(Clegg, 1981)	$\theta_{\rm max} = 50.80^{\circ}$	C7-C15	1.529 (3)	C23-C24	1.370 (4)
Absorption correction:	$h = -6 \rightarrow 0$	C7—C8	1.536 (3)		
ψ scan (SHELXTL-Plus;	$k = -14 \rightarrow 14$	C19-S-C18	102 93 (10)	C11-C8-C9	109.4 (2)
Sheldrick, 1990)	$l = -28 \rightarrow 28$	01-01-02	120.9 (2)	C11 - C8 - C7	115.1 (2)
$T_{min} = 0.694$ $T_{max} =$	3 standard reflections	01-C1-C6	120.6 (2)	C9-C8-C7	112.0 (2)
0.045	monitored every 07	C2-C1-C6	118.5 (2)	C14C9C8	109.7 (2)
0.94J	monitored every 97	C1-C2-C3	113.0 (2)	C14-C9-C10	111.0 (2)
5926 measured reflections	renections	C4—C3—C2	108.2 (2)	C8-C9-C10	111.4 (2)
2736 independent reflections	intensity decay: 4.5%	C4—C3—C17	102.4 (2)	C5-C10-C9	113.8 (2)
		C2—C3—C17	113.3 (2)	C12—C11—C8	110.2 (2)
Refinement		C3-C4-C5	101.8 (2)	C13-C12-C11	112.8 (2)
2		C10-C5-C4	114.5 (2)	C13—C14—C9	123.5 (2)
Refinement on F^2	Extinction correction:	C10C5C16	111.6 (2)	C14-C13-C12	123.8 (2)
$R[F^2 > 2\sigma(F^2)] = 0.040$	SHELXL93 (Sheldrick,	C4C5C16	100.9 (2)	C5-C16-C17	107.1 (2)
$wR(F^2) = 0.096$	1993)	C10-C5-C6	109.2 (2)	C18 - C1 / - C3	116.9 (2)
S = 1.080	Extinction coefficient	C4C5C6	111.5 (2)	C18 - C17 - C16	113.0 (2)
2726 male etiene	0.0019(2)	C16-C5-C6	108.9 (2)	C_{3} C_{17} C_{18} C_{17} C_{18} C_{17} C_{18} C_{18} C_{17} C_{18} $C_$	103.8 (2)
2750 reflections	0.0018(2)	C1 - C6 - C3	111.2 (2)	C1/-C10-S	114.3(2)
357 parameters	Atomic scattering factors	$C_1 = C_0 = C_7$	117.1 (2)	C_{24} C_{19} C_{20}	117.3(2)
$w = 1/[\sigma^2(F_o^2) + (0.0403P)^2]$	from International Tables	$C_{3} - C_{7} - C_{15}$	107.8(2)	C24	122.8 (2)
+ 0.9025P1	for Crystallography (1992,	02 - 07 - 013	107.8 (2)	$C_{20} - C_{10} - S_{10}$	122.0(2) 1201(3)
where $P = (F^2 + 2F^2)/3$	Vol C Tables 4.2.6.8 and	$C_{15} - C_{7} - C_{8}$	110.0(2)	C_{20} C_{21} C_{22} C_{21} C_{22}	120.0 (3)
$(\Lambda/\sigma) = 0.001$	6114)	02—C7—C6	107.4 (2)	C23—C22—C21	119.6 (3)
$(\Delta / 0)_{max} = 0.001$	0.1.1.7)	C15-C7-C6	114.7 (2)	C22-C23-C24	120.8 (3)
$\Delta \rho_{\text{max}} = 0.403 \text{ e A}^{3}$		C8-C7-C6	109.92 (15)	C23-C24-C19	120.2 (3)
$\Delta \rho_{\rm min} = -0.307 \ {\rm e} \ {\rm A}^{-3}$					6 1 .

Table 1. Fractional atomic coordinates and equivalentisotropic displacement parameters (Å²)

$U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	x	у	Ζ	U_{eq}
S	0.16288 (13)	0.31442 (4)	0.29855 (2)	0.0589 (3)
C1	0.0904 (4)	0.35986 (14)	0.46657 (8)	0.0368 (5)
01	-0.0751 (3)	0.41436 (11)	0.46247 (6)	0.0541 (5)
C2	0.2827 (4)	0.3757 (2)	0.43266 (10)	0.0471 (6)
C3	0.3921 (4)	0.2759 (2)	0.41721 (9)	0.0426 (5)
C4	0.4675 (4)	0.2183 (2)	0.46662 (9)	0.0415 (5)
C5	0.2419 (3)	0.18320 (13)	0.48588 (8)	0.0304 (5)
C6	0.1060 (3)	0.27392 (14)	0.50571 (7)	0.0285 (4)
C7	0.1736 (3)	0.31403 (14)	0.56165 (8)	0.0334 (5)
C15	0.3874 (4)	0.3782 (2)	0.56617 (9)	0.0462 (6)
02	-0.0071(3)	0.37624 (12)	0.57724 (6)	0.0461 (4)
C8	0.1944 (3)	0.22451 (15)	0.59982 (8)	0.0329 (5)
C9	0.3458 (3)	0.14004 (15)	0.58103 (9)	0.0377 (5)
C10	0.2612 (4)	0.10084 (15)	0.52745 (8)	0.0360 (5)
C11	-0.0282(4)	0.1786 (2)	0.61416 (8)	0.0390 (5)
C12	0.0113 (5)	0.1046 (2)	0.65935 (9)	0.0531 (6)
C14	0.3615 (4)	0.0547 (2)	0.62013 (10)	0.0487 (6)
C13	0.2133 (5)	0.0399 (2)	0.65477 (9)	0.0525 (7)
C16	0.1232 (4)	0.1431 (2)	0.43505 (8)	0.0363 (5)
C17	0.2259 (4)	0.20086 (15)	0.38970 (8)	0.0382 (5)
C18	0.0498 (4)	0.2456 (2)	0.35134 (9)	0.0468 (6)
C19	0.3093 (4)	0.2189 (2)	0.26625 (8)	0.0439 (6)
C20	0.2230 (5)	0.1225 (2)	0.25692 (10)	0.0540 (6)
C21	0.3406 (6)	0.0529 (2)	0.22955 (11)	0.0684 (8)
C22	0.5446 (6)	0.0798 (3)	0.21097 (10)	0.0750 (10)
C23	0.6272 (6)	0.1755 (3)	0.21977 (12)	0.0744 (9)
C24	0.5130 (5)	0.2446 (2)	0.24764 (10)	0.0622 (7)

Table 2. Selected geometric parameters (Å, °)

S C19 S C18 C1O1 C1C2 C1C6 C2C3 C1	1.771 (2) 1.807 (2) 1.220 (2) 1.506 (3) 1.516 (3) 1.531 (3)	C8—C11 C8—C9 C9—C14 C9—C10 C11—C12 C12—C13	1.529 (3) 1.532 (3) 1.510 (3) 1.533 (3) 1.528 (3) 1.487 (4)
C2—C3	1.531 (3)	C12—C13	1.487 (4)
C3—C4	1.528 (3)	C14—C13	1.316 (4)
C3—C17	1.540 (3)	C16—C17	1.558 (3)

The crystal was attached to the tip of a glass fiber for data collection. The cell constants used for the data collection were determined from reflections found from a 360° rotation photograph. High-angle cell constants were determined from a subset of intense reflections in the 2θ range 35.0 to 50.0° . Lorentz and polarization corrections were applied, along with a correction based on the decay of the standard reflections. A series of azimuthal reflections were collected and used to generate a semi-empirical absorption correction.

The space group $P2_1/c$ was chosen based on systematic absences and intensity statistics. Direct methods (Sheldrick, 1990) were used to generate an *E* map from which all non-H atoms were correctly placed. All non-H atoms were refined with anisotropic displacement parameters. H atoms were refined as riding isotropic atoms.

Data collection: SHELXTL-Plus (Sheldrick, 1990). Cell refinement: SHELXTL-Plus. Data reduction: SHELXTL-Plus. Program(s) used to solve structure: SHELXTL-Plus. Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL-Plus. Software used to prepare material for publication: SHELXTL-Plus.

We thank the National Institutes of Health for generous support of this research.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: KA1094). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Clegg, W. (1981). Acta Cryst. A37, 22-38.

Hikino, H., Koriyama, S. & Takemoto, T. (1973). Tetrahedron, 29, 773-779.

Kraus, G. A. & Su, Q. (1994). Synth. Lett. 4, 237.

Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany. 1. As shown in Fig. 2, the O atoms of the nitro group interact with the C—H groups of a neighboring molecule $[C(4)-H(4)\cdots O(2) \text{ and } C(6)-H(6)\cdots O(3) \text{ with } H\cdots O distances of 2.56 (1) and 2.46 (1) Å, respectively].$

Acta Cryst. (1995). C51, 1368-1369

5-Bromo-2-(2-nitroethenyl)furan

R. POMÉS, J. DUQUE AND H. NOVOA

X-ray Laboratory, National Center for Scientific Research, PO Box 6990, Havana, Cuba

N. CASTAÑEDO

Central University of Las Villas, Villa Clara, Cuba

A. TOSCANO

Institute of Chemistry, UNAM, México DF 04510, México

(Received 21 February 1994; accepted 26 January 1995)

Abstract

The five-membered ring of the title compound, $C_6H_4BrNO_3$, has normal geometry and there are no unusual intramolecular distances or angles. The O atoms of the nitro group interact with the C—H groups of a neighboring molecule with $H \cdots O$ distances of 2.46(1) and 2.56(1) Å.

Comment

The structure determination of 5-bromo-2-(2-nitroethenyl)furan, (I), was undertaken as part of a molecular-modeling investigation. The crystals were obtained by slow recrystallization from ethanol. Details of the synthetic work will be published elsewhere (Castañedo & Estrada, 1995).

Br
$$CH = CH$$

(D)

The structure and properties of the title compound are of great interest because of its proven pharmacological activity (Castañeda, 1993). A summary of the bond distances and angles, and intermolecular contacts shorter than the sum of the van der Waals radii (C 1.70, O 1.40 Å; Pauling, 1960), are listed in Table 2.

The displacement ellipsoids with the atomic numbering (SHELXTL-Plus; Sheldrick, 1991) are shown in Fig.

Fig. 1. Displacement ellipsoid plot (*SHELXTL-Plus*; Sheldrick, 1991) of the title compound. Ellipsoids are scaled to enclose 50% probability and H atoms are represented as spheres of arbitrary radii.

Fig. 2. The packing of the molecules in the unit cell. Hydrogen bonds are represented by dashed lines.

Experimental

Crystal data $C_6H_4BrNO_3$ $M_r = 218.01$ Monoclinic $P2_1/c$ a = 7.370 (1) Å b = 10.919 (2) Å c = 9.887 (1) Å $\beta = 108.45 (1)^\circ$

Mo
$$K\alpha$$
 radiation
 $\lambda = 0.71069$ Å
Cell parameters from 23
reflections
 $\theta = 2.86-25^{\circ}$
 $\mu = 5.3 \text{ mm}^{-1}$
 $T = 293 \text{ K}$
Prismatic

Acta Crystallographica Section C ISSN 0108-2701 ©1995